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General description of the thesis

Urgency of the research. A growing interest in many-valued (in particular,
infinite-valued) logics is based on their various applications that include repre-
sentation of fuzzy knowledge and approximate reasoning (see, e.g., [12, 14]).

As a field of mathematical logic, many-valued logic has been developed in
parallel with fuzzy logic, which goes back to L. Zadeh [18, 3]. Fuzzy logic of
Zadeh is based on theory of fuzzy sets. A fuzzy set is a set with fuzzy bounds,
more formally such a set is defined by means of a membership function that
assings a real number from the segment [0, 1] to an element. Fuzzy logic in broad
sense (or simply fuzzy logic) is a discipline that uses notions of fuzzy set theory
to develop methods of applied approximate reasoning (see [15]). Fuzzy logic is
employed in industrial systems of fuzzy control, such as household appliances.
However, methods of fuzzy logic are not well-founded from the point of view of
formal logic.

Formalization of fuzzy logic is activly pursued in the last decade (see the
fundamental books [14, 12, 7]). In connection with this formalization, mathe-
matical fuzzy logic (or fuzzy logic in narrow sense) is identified as a discipline
that developes deductive systems for fuzzy logic so that fuzzy logic is treated as
rigorous mathematical many-valued logic. Infinite-valued predicate Lukasiewicz
logic (its description can be found, e.g., in [14]) is used to formalize fuzzy logic.

The process of formation of mathematical fuzzy logic is far from its com-
pletion, because fuzzy logic uses concepts that have no analogs in many-valued
logic. Such a concept is linguistic modifiers like ”very”, ”extremely”, ”quite”, etc.
L. Zadeh [3] squares a membership function to represent modifier ”very”, this
makes formalization of fuzzy logic hard. Therefore an alternative and simpler
formalization of linguistic modifiers is an important step towards approach-
ing mathematical fuzzy logic and fuzzy logic in broad sense; moreover, such a
formalization would extend applications of mathematical fuzzy logic.

Proof search methods suitable for automation with computers are needed
for many successful applications of a logic. Before this research, only Hilbert-
type calculi were known for infinite-valued predicate Lukasiewicz logic (these
calculi can be found, e.g., in [14, 12]). It is widely accepted that Hilbert-type
calculi are not suitable for automatic proof search.

For infinite-valued propositional Lukasiewicz logic, there are various proof
search methods, among them: sematic tableaux [13, 17], sequent calculi [5, 10,
16]. We especially note the sequent calculus for a so-called level logic [5]. Logical
connectives of the level logic allows to represent formulas of Lukasiewicz logic.
Axiom recognition is performed by means of linear programming methods. This
approach is developed in the present research.

Attempts of applying proof search methods for infinite-valued propositional
Lukasiewicz logic to approximate reasoning are awkward, because, in particular,
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these methods do not cover predicate logic. For example, predicate formulas
have to be translated to propositional ones to representat fuzzy knowledge in
the recent paper [16]. Firstly, such a translation can be performed only for
finite domains of predicates and, secondly, it essentially lengthens formulas
that represent source knowledge.

Thus development of calculi, which are suitable for proof search, for infinite-
valued predicate Lukasiewicz logic and implementation of computer programs
for proof search are challenging research tasks. Moreover, the increasing interest
in infinite-valued predicate Lukasiewicz logic in connection with development
of mathematical fuzzy logic stipulate automation of proof search for this logic
of Lukasiewicz.

Goals of the research. To extend infinite-valued predicate Lukasiewicz logic
with means for expressing modifiers like ”very”, to develop a calculus for the
extension, and to implement a proof search algorithm in the calculus.

Main results

1. A sequent calculus for infinite-valued predicate Lukasiewicz logic ex-
tended with linguistic modifiers like ”very” was formulated.

2. Properties of the proposed sequent calculus were investigated, these prop-
erties provide a theoretical basis for development of a proof search algo-
rithm in the calculus.

3. An algorithm for proof search in the proposed calculus was developed.
Correctness of the algorithm was proved.

4. The proof search algorithm was implemented as an application program-
ming interface.

5. An algorithm for solving systems of linear two-term inequalities was re-
fined, this algorithm is used to recognize some axioms of the proposed
calculus. Time complexity of the algorithm was evaluated in a formal
computational model.

6. The algorithm for solving systems of linear two-term inequalities was
implemented as an application programming interface.

Scientific novelty. All the main results of the thesis are novel. Before this
research, only Hilbert-type calculi for infinite-valued predicate Lukasiewicz logic
were known and neither theoretical basis nor software for automatic proof search
in this logic were developed.
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Theoretical and practical value. The proposed logic can be used to rep-
resent fuzzy knowledge. The formulated sequent calculus can be used for proof
search in infinite-valued predicate Lukasiewicz logic as well as its proposed ex-
tension. Proof search in the sequent calculus is significantly more effective than
proof search in a Hilbert-type calculi.

The implemented application programming interface (API) for proof search
can be employed, for example, in research for automatic proof search in infinite-
valued predicate Lukasiewicz logic and its proposed extension. The API can
serve as an inference engine of a deductive system based on either of the logics
in question.

The implemented API for solving systems of linear two-term inequalities
can be used to solve problems, which size is significantly greater than size of
problems that can be solved with popular computer algebra systems.

Approbation of the thesis. The results of the thesis were presented on

• VIII and IX All-Russian scientific conferences ”Contemporary logic: prob-
lems of theory, history and applications in science” (Saint-Petersburg,
2004 and 2006);

• Contest-conference for students, PhD students and young scientists of
North-West ”Microsoft technologies in theory and practice of program-
ming” (Saint-Petersburg, 2005);

• International conference ”Stability and control processes” (Saint-
Petersburg, 2005);

• a seminar of Saint-Petersburg department of Russian association of arti-
ficial intelligence (Saint-Petersburg, 2006);

• XVI International school-seminar ”Synthesis and complexity of control
systems” (Saint-Petersburg, 2006);

• Tenth national conference on artificial intelligence CAI-06 (Obninsk,
2006).

Publications. The main results were published in papers [1′ – 6′].

Structure and volume of the thesis. The thesis consists of 6 chapters,
references and 2 appendices. The volume of the thesis is 194 pages. The
principal contents of the thesis take 168 pages, appendices take 26 pages. The
references consist of 82 items.
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Contents of the thesis

The first chapter contains a short abstract of the thesis, a description of
infinite-valued predicate Lukasiewicz logic, an overview of related papers, and
a justification of urgency of the research. Then goals of the research are posed
and brief contents of the next chapters are given.

The second chapter is devoted to a description of a logic proposed (the
logic is denoted by Lq), a sequent calculus LqS for the logic, and properties of
the calculus [2′, 1′].

A language of the logic Lq and its semantics are defined in the first section of
this chapter. An integral part of a predicate variable is a so-called its segment
of truth values [a, b], where a, b are rational numbers, a < b. A term is an
individual variable or an individual constant. An atomic formula is a rational
number, a propositional variable, or a predicate variable followed by a bracketed
list of terms. A formula of the logic Lq is an atomic formula or (A&B), (A∨B),
(A ≺ B), q ·A, ∀xA, or ∃xA, where A and B are formulas of the logic Lq, q is
a rational number, x is an individual variable. Connectives ≺ and q· are called
fuzzy inequality and a moderator respectively.

In order to define semantics of a language of logic Lq, notions of inerpreta-
tion and evaluation of the language are introduced. These notions are similar
to classical ones only that here an interpretation takes each predicate variable
to the predicate, which range of values is a subset of the segment of truth values
of the predicate variable (an interpretation takes a propositional variable to the
real number that belongs to the segment of truth values of the propositional
variable). If an interpretation and an evaluation of a language are specified,
then a formula A is assigned its truth value [A], which is a real number, accord-
ing to the following rules: [(A&B)] = min([A], [B]), [(A ∨ B)] = max([A], [B]),
[(A ≺ B)] = [B] − [A], [q · A] = q · [A], [∀xA] = infx[A], [∃xA] = sup

x
[A]. A

formula is called valid, if its truth value is nonnegative in any interpretation
and any evaluation.

Note that, firstly, moderators can increase or decrease truth values of for-
mulas, therefore linguistic modifiers like ”very” can be formalized by means of
moderators. Secondly, suppose A is an Lq formula, r is a rational number; then
the statement ’A takes on truth values greater or equal to (respectively, less or
equal to) r in any interpretation and any evaluation’ is equivalent to ’(r ≺ A)
(respectively, (A ≺ r)) is valid’. Thirdly, any formula of infinite-valued predi-
cate Lukasiewicz logic can be represented as a formula of the logic Lq so that
truth values of these formulas are equal in any interpretation and any evalua-
tion.

The following example of formalization of approximate reasoning using
the logic Lq is given. Premises ’if an object is small, then it is difficult to
discern the object’ and ’the object z is very small’ imply that ’it is quite
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difficult to discern the object z’. Let us introduce a predicate P1[0, 1](x)
that take an object x to the real number from the segment [0, 1], the
number expresses the degree of smallness of the object, and a predicate
P2[0, 1](y) that similarly expresses the degree of difficulty of discerning
an object y. We formalize the modifier ”very” by means of the mod-
erator 1/2· and the modifier ”quite” by means of the moderator 2/3·.
We represent the given approximate reasoning as a formula of the logic Lq:
((∀x(P1[0, 1](x) ≺ P2[0, 1](x)) & 1/2 · P1[0, 1](z)) ≺ 2/3 · P2[0, 1](z)). Thus
in order to justify this reasoning, it is sufficient to prove the appropriate for-
mula.

In the end of the first section of the second chapter, a theorem about nonenu-
merability of the set of all valid formulas of the logic Lq is proved.

In the second section of the second chapter, an antecedent-free sequent
calculus LqS for the logic Lq is formulated and concomitant notions are defined.
A sequent is a finite list of Lq formulas separated with commas (each of these
formulas is called a member of the sequent), some formulas may be repeated,
an order of formulas in the list is of no importance. A sequent is called valid, if
the disjunction of all its members is valid (the empty sequent is represented by
the number −1). Inference rules are listed, the rules introduce logical symbols
exept for fuzzy inequality and a moderator that stands just in front of an atomic
formula (formulas that contain only atomic formulas with moderators in front
of them and fuzzy inequalities are processed on axiom recognition).

Then axioms of the calculus LqS are defined. A canonical chain of inequal-
ities (CCI) is defined in the following way. Each formula of the form P or q ·P
(where q· is a moderator, P is an atomic formula) is a CCI. If I is a CCI and
J is a CCI, then (I ≺ J) is a CCI.

Let S be a sequent. Suppose each member of S that is not a CCI is elim-
inated from S; then the sequent obtained is called the basic subsequent of the
sequent S. We say that a sequent is an axiom if its basic subsequent is valid.

The algorithm given in the thesis to each sequent with the nonempty basic
subsequent assigns the system of strict and nonstrict linear inequalities with
rational coefficients and rational-valued variables. The following theorem is
proved: such a sequent is an axiom iff the corresponding system of linear in-
equalities is inconsistent.

Some properties of the calculus LqS are proved in the third section of the
second chapter. Let us list the most important properties.

1. All the inference rules and their inversions keep validity of sequents. The
calculus LqS is sound.

2. The calculus LqS is consistent.
3. The antecedent-free sequent calculus for classical two-valued logic can be

embedded into the calculus LqS.
4. A sound and complete calculus for the logic Lq does not exist.
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5. The calculus LqS is undecidable.
6. The calculus LqS is complete for the propositional fragment of the

logic Lq.
7. The propositional fragment of the calculus LqS is decidable.
8. Minus-normalization is admissible in a proof search in the calculus LqS.
Let us explain the last property. When we search for a proof of a sequent S

bottom-up, we find sequents that are premises of an application of an inference
rule such that S is the conclusion of the application, then for each sequent S ′

obtained, if S ′ is not an axiom, we find sequents that are premises of an applica-
tion of an inference rule such that S ′ is the conclusion of the application, and so
on. Thus we apply inference rules backward. On a backward application of an
inference rule that introduces a given occurrence of a logical symbol, premises
are constructed in a determinate way except for the case when a so-called ex-
istential rule is applied backward. Each existential rule of the calculus LqS
resembles the rule of existential quantifier introduction into the succedent of a
sequent in Gentzen sequent calculus for classical two-valued logic. There are in-
finitely many variants of choosing a witnessing term on a backward application
of an existential rule of the calculus LqS.

For classical two-valued first-order logic, sequent calculi are known (see,
e.g., [4] as well as [6, 11]) such that the searching of witnessing terms on a
bacward application of an existential rule is finite. Such an elimination of
infinite searching of terms is called minus-normalization [6]. However, the
mentioned papers (and other publications we are aware of) do not contain a
proof of equivalence of their sequent calculi and a conventional sequent calculus
for classical two-valued logic.

In the present thesis, we formulate a restriction on witnessing terms (a
witnessing term is one of the terms that occur in the conclusion of an existential
rule) and prove that this restriction does not change the set of provable sequents.
(Then minus-normalization for the sequent calculus for classical two-valued
logic is justified by property 3.)

In the fourth section of the second chapter, a sublogic Lq2 of the logic Lq
and a sequent calculus Lq2S for the sublogic are described. Use of the connec-
tive ≺ in formulas of the sublogic Lq2 is restricted so that recognizing of an
axiom of the calculus Lq2S is reduced to testing inconsistency of the system of
linear inequalities, each such an inequality has no more than two terms. There
exists a strongly polynomial algorithm to test inconsistency of such systems
(such an algorithm is described in the fifth chapter of the thesis), whereas only
polynomial algorithms for axiom recognition in the calculus LqS are known.
The sublogic Lq2 appear sufficiently expressive for initial modeling of a fuzzy
knowledge domain.

In the third chapter, a proof search algorithm is described and its prop-
erties are proved.
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When a proof of a sequent S is searched bottom-up, a proof search tree
is constructed naturally: the root of the tree is the sequent S, the immediate
descendants of the root are sequents, which are premises of a backward appli-
cation of an inference rule to the sequent S, and so on (the tree is considered
as growing upwards from the root). A proof search tree becomes a proof tree
(i.e., the proof is found) when all leaves of the tree are axioms.

Despite the fact that infinite searching of witnessing terms can be avoided,
the problem of choosing witnessing terms needs to be addressed still. We use the
method of metavariables : we defer the choice of a concrete witnessing term on a
backward application of an existential rule and substitute a unique metavariable
in place of such a term. Thus a proof skeleton is constructed instead of a proof
search tree. Then sometimes we are to check whether we can assign terms to
metavariables so that the proof skeleton becomes the proof tree.

The proposed algorithm Prove [3′] searches for a proof of a given sequent
constructing a proof skeleton. Whenever an existential rule is applied backward
and a metavariable is introduced, the substitution set is associated with the
metavariable, this finite set contains all terms that are sufficient to substitute
for the metavariable according to the restriction of minus-normalization. Then
in order to turn a proof skeleton to a proof tree, unification is performed, i.e.,
substitution sets of all metavariables of the skeleton are searched for values of
metavariables so that the skeleton becomes the proof tree.

An idea of the algorithm is discussed and notions in use are defined in the
first section of the third chapter.

In the second section, steps of the main algorithm Prove and auxiliary
algorithms (an algorithm for axiom recognition and a unification algorithm)
are described. Also requirements to an auxiliary algorithm called proof search
tactics are stated. Given a proof skeleton, such an algorithm reports, when
unification is to be performed, and chooses (a) a leaf sequent S, (b) an inference
rule (R), which backward application are to be performed, and (c) an occurrence
of the logical symbol in S such that the occurrence can be introduced into S with
an application of the rule (R). An example of a proof search with comments is
listed in the end of the second section.

In the third section, some properties of the auxiliary algorithms and the
main algorithm Prove are proved. Finally the following theorem is proved.

Theorem. Suppose the algorithm Prove uses any proof search tactics; S is
a sequent, which is the input data for the algorithm Prove. Then the following
statements are true.

(1) If the algorithm Prove gave the answer ”provable”, then the sequent S is
provable in the calculus LqS.

(2) If the algorithm Prove gave the answer ”unprovable”, then the sequent S
is unprovable in the calculus LqS.
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(3) Suppose the sequent S does not contain a quantifier. Then the algo-
rithm Prove gives the answer ”provable” if the sequent S is provable in
the calculus LqS, and gives the answer ”unprovable” if the sequent S is
unprovable in the calculus LqS.

In the end of the third section, a choice of proof search tactics is discussed
and one tactics is described. The tactics chooses existential rules for back-
ward applications ”uniformly”, giving different occurrences of quantifiers equal
opportunities to participate in backward applications.

In the fourth chapter, a software implementation of the proof search algo-
rithm is described [3′]. The algorithm is implemented in the Java programming
language as an application programming interface (API), which provides pro-
grammatic interface to access its functionality. In the beginning of the chapter,
the purpose of main classes is breifly described and class diagrams, which rep-
resent hierarchies of logical symbols, terms, and formulas, are given.

Then a policy of object sharing in the program representation of formulas
(using syntax trees with possibly shared leaves) and sequents is specified. The
policy, on the one hand, allows to uniquely and efficiently identify an occurrence
of a non-atomic subformula in a formula and, on the other hand, safes a lot of
memory as formulas may be shared between sequents.

Then main features of the software implementation of the proof search al-
gorithm are described. Let us mention the following key features.

Any proof search tactics is defined through an interface Tactics. The main
algorithm for proof search can employ any tactics that implement this interface.
(Such an architecture is known as the design pattern strategy [8].)

Each inference rule is represented as an object, which has a method that
applies the rule backward. The main algorithm of proof search delegates a
backward application of a rule, which is chosen by the tactics, to the rule itself.
Thus the inference rules can be easily modified.

Every system of linear inequalities, which is constructed on axiom recogni-
tion, is tested for inconsistency by an auxiliary algorithm described in the fifth
chapter of the thesis if all the inequalities are two-term, otherwise the system
of linear inequalities is tested by the function FindInstance of the computer
algebra system Mathematica (via J/Link, a toolkit that links a Java program
and Mathematica).

A systematic survey of the public API for proof search is given in the end
of the fourth chapter.

The volume of the program source code written, including the implemen-
tation of the algorithm for solving systems of linear two-term inequalities, is
about 9000 lines.

The fifth chapter is devoted to an algorithm for testing consistency of
systems of strict and nonstrict linear two-term inequalities with integer coef-
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ficients and rational-valued variables as well as an algorithm for solving such
systems (an algorithm of solving systems is an algorithm that finds at least
one solution of the system if a solution exists, otherwise the algorithm reports
that the system is inconsistent). These algorithms are based on the method
of elimination of variables and removal of redundant inequalities so that the
number of inequalities that contain any two variables is limited by a constant
fixed beforehand.

An algorithm is said to be strongly polynomial (see, e.g., [9]), if (a) it is
polynomial in time on Turing machine, and (b) a number of elementary arith-
metic operations (addition, subtraction, multiplication, division, comparison),
which are performed by the algorithm on rational numbers, is bounbed by a
polynomial of the number of integers in an input.

These algorithms were proposed in [2] and the condition (b) of the above
definition was established ibidem.

In the present thesis, these algorithms are refined, moreover, some steps are
added to the algorithms (the description of the algorithms from [2] is incor-
rect without these steps) and an auxiliary algorithm for removal of redundant
inequalities is developed (see [5′, 6′]). Correctness of the algorithms described
in the thesis is proved, i.e., the algorithm for testing consistency of systems of
linear two-term inequalities gives the answer ”consistent” if an input system is
consistent, and gives the answer ”inconsistent” if an input system is inconsistent.
(an analogous statement is proved for the algorithm for solving systems).

Then a computational model, which is close to random access machine with
logarithmic cost criterion (see [1]) is specified and a polynomial bound on time
complexity of the described algorithms is obtained [6′]. It is established that
the algorithms are polynomial in time on Turing machine, this allows to prove
the algorithms are strongly polynomial.

In the last section of the fifth chapter, an implementation of the algorithms
in the Java programming language as an application programming interface is
described [4′]. There are two algorithms with similar steps in the implementa-
tion: the mentioned algorithm for solving systems with removal of redundant
inequalities and an algorithm based on the ordinary method of elimination of
variables. One of the principal tasks of object-oriented programming, common
behavior extraction for the purpose of code reuse, is accomplished by means of
template method [8].

Finally, results of experiments comparing performance of the algorithm for
solving systems, which is implemented by the author of the thesis, and an al-
gorithm, which is represented by the function FindInstance of the computer
algebra system Mathematica, are given. The experiments were carried out on
a personal computer. To solve a system, which amounts several thousands of
inequalities, the implemented algorithm spends several seconds, whereas Math-
ematica spends several tens of minutes. To solve a system, which amounts
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several tens of thousands of inequalities, the implemented algorithm spends up
to several tens of seconds, whereas Mathematica does not finish its work in
12 hours. These results show that the implemented algorithm is significantly
more efficient for solving systems of linear two-term inequalities than the algo-
rithm used in the computer algebra system Mathematica.

The sixth chapter contains a list of main results of the thesis.

In the appendix A, a source code of a short program, which uses the
implemented API for proof search, is given. A report of a proof search of
a formula, listed in the next section of this appendix, was produced by the
program. An example of formalizing fuzzy knowledge represented as natural
language sentences using the logic Lq and deducing new fuzzy knowledge from
the initial facts is described in the last section of the appendix A.

The appendix B contains a source code of a short program, which makes
use of the implemented API for solving systems of linear two-term inequalities
and is used for comparing performance of the algorithm for solving systems
implemented by the author of the thesis and the algorithm, which is represented
by the function FindInstance of the computer algebra system Mathematica.
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