Лекции по теории формальных языков Лекция 8.

Синтаксический анализ для LL(1)-грамматик

Александр Сергеевич Герасимов http://gas-teach.narod.ru

Кафедра математических и информационных технологий Санкт-Петербургского академического университета Российской академии наук. Весенний семестр 2010/11 учебного года

1 апреля 2011 г.

План

1 LL(1)-грамматики

② Синтаксический анализ для LL(1)-грамматик

Вычисление множеств выбора правил (начало)

План

1 LL(1)-грамматики

② Синтаксический анализ для LL(1)-грамматик

③ Вычисление множеств выбора правил (начало)

Наводящие соображения

- Далее считаем все рассматриваемые грамматики приведёнными, а выводы — левыми, если не будет оговорено иное.
- Расширим класс разделённых грамматик, сохранив возможность моделирования (Д)МП-автоматом левого вывода.
- ullet Пусть G грамматика с аксиомой S, $w=\mathtt{a}_1\ldots\mathtt{a}_n\in L(G)$.
- Тогда существует левый вывод цепочки w:

$$S = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \ldots \Rightarrow \alpha_m = w.$$

- Пусть в ходе синтаксического анализа цепочки w прочитан её префикс $\mathtt{a}_1 \ldots \mathtt{a}_j$ и получена $\alpha_i = \mathtt{a}_1 \ldots \mathtt{a}_j A \beta$.
- Когда можно однозначно определить правило (для перехода $\alpha_i \Rightarrow \alpha_{i+1}$) по $a_1 \dots a_j$, A и следующему входному символу a_{j+1} ?

Функция FIRST

- Пусть $G = (\Sigma, \Gamma, P, S)$ KC-грамматика, $\alpha \in (\Sigma \cup \Gamma)^*$. Тогда $\mathrm{FIRST}(\alpha) = \{\mathtt{a} \in \Sigma \mid \exists \beta \ (\alpha \Rightarrow^* \mathtt{a}\beta)\} \cup \{\varepsilon \mid \alpha \Rightarrow^* \varepsilon\}.$
- ullet Пример. Грамматика $G_1\colon S o AC,\ A o \mathtt{ab}C|\mathtt{b}B,\ B o \mathtt{b},\ C o \mathtt{c}|arepsilon.$
 - $FIRST(ab) = \{a\};$
 - FIRST(ε) = { ε };
 - FIRST(bAC) = {b};
 - FIRST(AcC) = {a,b};
 - FIRST(C) = { c, ε };
 - FIRST(CA) = {a,b,c}.
- Расширим определение функции FIRST. Для КС-грамматики $G = (\Sigma, \Gamma, P, S)$ и $L \subseteq (\Sigma \cup \Gamma)^*$ положим

$$FIRST(L) = \{u \mid \exists \alpha \in L \ (u \in FIRST(\alpha))\}.$$

Функция FOLLOW

- Пусть $G = (\Sigma, \Gamma, P, S)$ КС-грамматика, $A \in \Gamma$, $\exists \alpha \in \Sigma \mid \exists \alpha, \beta \ (S \Rightarrow^* \alpha A a \beta) \} \cup \{\exists \alpha \ (S \Rightarrow^* \alpha A) \}$, где выводы необязательно левые.
- ullet Пример. Грамматика G_1 : $S o AC, \ A o \mathtt{ab} C | \mathtt{b} B, \ B o \mathtt{b}, \ C o \mathtt{c} | arepsilon.$
 - ▶ FOLLOW(A) = {c, \dashv };
 - ▶ FOLLOW(B) = {c, \dashv };
 - ▶ FOLLOW(C) = {c, \dashv };
 - ▶ FOLLOW(S) = $\{ \exists \}$.

Определения множества выбора правила и LL(1)-грамматики

• Пусть $A \to \alpha$ — правило вывода КС-грамматики. Тогда множеством выбора этого правила называется множество

$$\mathtt{SELECT}(A \to \alpha) = \mathtt{FIRST}(\alpha \mathtt{FOLLOW}(A)).$$

• Ясно, что

$$\operatorname{SELECT}(A \to \alpha) = \left\{ \begin{array}{ll} \operatorname{FIRST}(\alpha), & \operatorname{если} \ \varepsilon \notin \operatorname{FIRST}(\alpha), \\ \left(\operatorname{FIRST}(\alpha) \setminus \{\varepsilon\}\right) \cup \operatorname{FOLLOW}(A), & \operatorname{если} \ \varepsilon \in \operatorname{FIRST}(\alpha). \end{array} \right.$$

• КС-грамматика называется LL(1)-грамматикой, если для любого нетерминала A и любых его различных альтернатив α и β выполняется

$$SELECT(A \to \alpha) \cap SELECT(A \to \beta) = \emptyset.$$

Множества выбора правил: пример

Грамматика GA_3 (порождающая язык арифметических выражений):

- $E \rightarrow TE'$, $E' \rightarrow +TE' | \varepsilon$,
- $T \to FT'$, $T' \to *FT' | \varepsilon$,
- $F \rightarrow (E) \mid x$.

Правило	Множество выбора
$F \rightarrow (E)$	{(}
$F \rightarrow x$	{x}
$T' \rightarrow *FT'$	{*}
$E' \rightarrow +TE'$	{+}
$T \rightarrow FT'$	{(,x}
$E \rightarrow TE'$	{(,x}
$E' \to \varepsilon$	$FOLLOW(E') = \{\dashv, \}\}$
$T' \to \varepsilon$	$FOLLOW(T') = \{\dashv, +, \}$

 GA_3 является LL(1)-грамматикой.

Грамматика, не являющаяся LL(1)-грамматикой

Грамматика GA_2 (порождающая язык арифметических выражений):

- $E \rightarrow T \mid E + T$,
- $T \rightarrow F \mid T * F$,
- $F \rightarrow (E) \mid x$.

 GA_2 не является LL(1)-грамматикой, поскольку

$$\mathtt{SELECT}(E \to T) = \{(\mathtt{,x}\} = \mathtt{SELECT}(E \to E + T).$$

Теорема о равносильных определениях LL(1)-грамматики

Теорема

KC-грамматика G с аксиомой S является LL(1)-грамматикой тогда и только тогда, когда из существования двух выводов

- (1) $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx u$
- (2) $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$,

для которых FIRST(x) = FIRST(y), следует, что $\beta = \gamma$.

Доказательство.

• Пусть G является LL(1)-грамматикой. Рассмотрим выводы (1) и (2), для которых FIRST(x) = FIRST(y). Но предположим, что $\beta \neq \gamma$.

Теорема о равносильных определениях LL(1)-грамматики: окончание доказательства

- Так как $\beta \alpha \Rightarrow^* x$, то $\mathrm{FIRST}(x) \subseteq \mathrm{FIRST}(\beta \alpha)$. Аналогично $\mathrm{FIRST}(y) \subseteq \mathrm{FIRST}(\gamma \alpha)$.
- Тогда

$$\operatorname{FIRST}(x) = \operatorname{FIRST}(y) \subseteq \operatorname{FIRST}(\beta \alpha) \cap \operatorname{FIRST}(\gamma \alpha) \neq \emptyset.$$

• Вспоминая, что SELECT $(A \to \beta) = \text{FIRST}(\beta \text{FOLLOW}(A))$, SELECT $(A \to \gamma) = \text{FIRST}(\gamma \text{FOLLOW}(A))$ и $S \Rightarrow^* wA\alpha$, получаем

$$SELECT(A \to \beta) \cap SELECT(A \to \gamma) \neq \emptyset.$$

Противоречие с тем, что G является LL(1)-грамматикой.

• Доказательство в обратную сторону — упражнение.

Теорема о непринадлежности леворекурсивной грамматики классу LL(1)-грамматик

Теорема

Никакая леворекурсивная КС-грамматика не является LL(1)-грамматикой.

Доказательство.

- ullet Пусть G леворекурсивная КС-грамматика с аксиомой S.
- Покажем, что существуют выводы
 - ► $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$ и
 - $S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$

для которых $\mathrm{FIRST}(x) = \mathrm{FIRST}(y)$, но $\beta \neq \gamma$. Тогда по предыдущей теореме G не будет LL(1)-грамматикой.

Теорема: окончание доказательства

• Существует вывод $B \Rightarrow^+ B\eta$:

$$B=B_0\Rightarrow B_1\eta_1\Rightarrow B_2\eta_2\eta_1\Rightarrow\ldots\Rightarrow B_m\eta_m\ldots\eta_1=B\eta\ .$$

- ullet Для некоторого j имеются различные правила $B_j o B_{j+1} \eta_{j+1} \mid eta.$
- Существует вывод

$$S \Rightarrow^* wB\mu \Rightarrow^* wB\eta\mu \Rightarrow^* w \underbrace{B_j}_A \underbrace{\eta_j \dots \eta_1 \eta\mu}_{\alpha}$$
,

который можно продолжить двумя путями:

$$(1) \Rightarrow w\beta\underbrace{\eta_{j}\dots\eta_{1}\eta\mu}_{\alpha}\Rightarrow^{*}w\underbrace{vu_{j}\dots u_{1}uz}_{x}$$
 и
$$(2) \Rightarrow w\underbrace{B_{j+1}\eta_{j+1}}_{\gamma}\underbrace{\eta_{j}\dots\eta_{1}\eta\mu}_{\alpha}\Rightarrow^{*}w\beta\eta_{j}\dots\eta_{1}\eta^{2}\mu\Rightarrow^{*}w\underbrace{vu_{j}\dots u_{1}u^{2}z}_{y},$$
 где $\beta\Rightarrow^{*}v$, $\eta_{i}\Rightarrow^{*}u_{i}$ ($i=1,\dots,j$), $\eta\Rightarrow^{*}u$, $\mu\Rightarrow^{*}z$.

• Итак, имеем FIRST(x) = FIRST(y), но $\beta \neq \gamma$.

Замечание о непринадлежности некоторых грамматик классу LL(1)-грамматик

Если грамматика содержит правила $A \to \alpha \beta_1 | \alpha \beta_2$, $\beta_1 \neq \beta_2$ и существует терминал $a \in FIRST(\alpha)$, то эта грамматика не является LL(1)-грамматикой, поскольку

$$a \in SELECT(A \to \alpha\beta_1) \cap SELECT(A \to \alpha\beta_2).$$

Пример преобразования грамматики в эквивалентную LL(1)-грамматику

- Граматика *GL*₃ (порождающая язык списков):
 - \triangleright $S \rightarrow L; S \mid L,$
 - L → a | [S].

 GL_3 не является LL(1)-грамматикой (почему?).

- Произведём левую факторизацию граматики GL_3 и получим грамматику GL_3' :
 - \triangleright $S \rightarrow LS'$,
 - $S' \rightarrow ; S \mid \varepsilon$,
 - L → a | [S].

Правило	Множество выбора
$L \rightarrow a$	{a}
$L \rightarrow [S]$	{[}
$S \rightarrow LS'$	{a,[}
$S' \rightarrow ; S$	{;}
$S' \to \varepsilon$	$\{\dashv,]\}$

 GL_3' является LL(1)-грамматикой.

План

1 LL(1)-грамматики

② Синтаксический анализ для LL(1)-грамматик

③ Вычисление множеств выбора правил (начало)

Алгоритм построения нисходящего синтаксического анализатора для LL(1)-грамматики

В выводе

$$S \Rightarrow^* w\underline{A}\alpha \Rightarrow w\beta\alpha \Rightarrow^* wb\chi$$

 \underline{A} заменяется по такому правилу A oeta, что $\mathtt{b}\in\mathrm{SELECT}ig(A oetaig)$.

$$B$$
ход. LL(1)-грамматика $G=(\Sigma,\Gamma,P,S)$. B ыход. МПА $\mathcal{M}=(\widehat{\Sigma},\widehat{\Gamma},\delta,\gamma_0)$ такой, что $L(G)=L(\mathcal{M})$.

1.
$$\widehat{\Sigma} := \Sigma \cup \{\exists\}; \ \widehat{\Gamma} := \Sigma \cup \Gamma \cup \{\nabla\}; \ \gamma_0 := S;$$

2.
$$\delta := \{(\dashv, \nabla) \rightarrow \checkmark\};$$

3. для каждого
$$(B \rightarrow \gamma) \in P$$

4. для каждого
$$a \in SELECT(B \rightarrow \gamma)$$

5.
$$\delta := \delta \cup \{(a, B) \rightarrow (\gamma, _)\};$$

6. для каждого
$$a \in \Sigma$$

7.
$$\delta := \delta \cup \{(a, a) \rightarrow (\varepsilon, \vec{\ })\}$$

Почему построенный МПА ${\mathcal M}$ детерминированный?

Пример построения синтаксического анализатора для LL(1)-грамматики

Грамматика *GA*₃:

- $E \rightarrow TE'$, $E' \rightarrow +TE'|\varepsilon$,
- ullet T o FT', T' o *FT' | arepsilon,
- $F \rightarrow (E) \mid x$.

Правило	Мн. выб.		
$E \rightarrow TE'$	{(,x}		
$E' \rightarrow +TE'$	{+}		
$E' \to \varepsilon$	$\{\dashv,)\}$		
$T \rightarrow FT'$	{(,x}		
$T' \rightarrow *FT'$	{*}		
T' o arepsilon	$\{\dashv,+,)\}$		
$F \rightarrow (E)$	{(}		
$F \to x$	{x}		

	х	+	*	()	\vdash
E	TE'			TE'		
E'		+TE'			ε	ε
T	FT'			FT'		
T'		ε	*FT'		ε	ε
F	Х			(E)		
	•	•				

Теорема о корректности алгоритма построения синтаксического анализатора для LL(1)-грамматики

Теорема

Для любой LL(1)-грамматики $G=(\Sigma,\Gamma,P,S)$ алгоритм на слайде 17 строит МПА $\mathcal M$ такой, что $L(G)=L(\mathcal M)$.

Доказательство.

- Пусть автомат \mathcal{M} обрабатывает цепочку w в течение n тактов, после чего отвергает её или выполняет команду допуска.
- Для каждого $k=0,1\ldots,n$ через w_k обозначим прочитанный за первые k тактов префикс цепочки w, а через β_k содержимое стека сразу после k-го такта.
- Положим $\alpha_k = w_k \beta_k$. Имеем $w_0 = \varepsilon$, $\beta_0 = S$, $\alpha_0 = S$.
- Из последовательности $\alpha_0, \alpha_1, \ldots, \alpha_n$ вычеркнем (рекурсивно) все элементы α_k такие, что $\alpha_{k-1} = \alpha_k$. Получим последовательность Π : $\alpha_0 = \alpha_{i_0}, \alpha_{i_1}, \ldots, \alpha_{i_n} = \alpha_n$.

Теорема: продолжение доказательства

- П (левый) вывод цепочки α_n в грамматике G:
 - ▶ если на k-м такте применена команда вида (a, a) \rightarrow (ε , $\vec{\ }$), то w_{k-1} a = w_k , β_{k-1} = a β_k и α_{k-1} = α_k ;
 - если же на k-м такте применена команда вида $(a, B) \to (\gamma, _)$, то $w_k = w_{k-1}$, $\beta_{k-1} = B\beta'$, $\beta_k = \gamma\beta'$ (для некоторой β') и $(B \to \gamma) \in P$. Тогда $\alpha_{k-1} = w_k B\beta' \Rightarrow w_k \gamma\beta' = \alpha_k$.
- Если $w \in L(\mathcal{M})$, то $w_n = w$, $\beta_n = \varepsilon$ и $\alpha_n = w$, поэтому $w \in L(G)$.
- Обратно, пусть $w \in L(G)$. Тогда существует (левый) вывод $S = \gamma_0, \gamma_1, \dots, \gamma_s = w$.
- Индукцией покажем, что для любого $i\leqslant s$ найдётся такое k, что $\gamma_i=\alpha_k.$
- База индукции верна: $\gamma_0 = S = \alpha_0$.
- Индукционный переход. Пусть для некоторого i < s верно $\gamma_i = \alpha_k = w_k \beta_k$.
 - $ightharpoonup \gamma_{i+1}$ получена из γ_i заменой самого левого вхождения нетерминала по некоторому правилу $A o \gamma$.

Теорема: продолжение доказательства

- $\beta_k = a_1 \dots a_m A \beta' \ (m \geqslant 0), \ \gamma_i = \alpha_k = w_k \beta_k = w_k a_1 \dots a_m A \beta'.$
- lacktriangle $w_k {f a}_1 \dots {f a}_m$ префикс входной цепочки w. На тактах с (k+1)-го по (k+m)-й автомат ${\cal M}$ прочитает и удалит из стека ${f a}_1 \dots {f a}_m$.
- $\mathbf{w}_{k+m} = \mathbf{w}_k \mathbf{a}_1 \dots \mathbf{a}_m, \quad \beta_{k+m} = A\beta', \quad \gamma_i = \alpha_k = \alpha_{k+m}.$
- Обозначим через w' непрочитанный после (k+m) тактов суффикс входной цепочки w, а через с первый символ w' при $w' \neq \varepsilon$ или \dashv при $w' = \varepsilon$. Покажем, что $c \in \text{SELECT}(A \to \gamma)$.
- $\gamma_i = w_k a_1 \dots a_m A \beta' \Rightarrow \gamma_{i+1} = w_k a_1 \dots a_m \gamma \beta' \Rightarrow^* w = w_k a_1 \dots a_m w'$, следовательно, $\gamma \beta' \Rightarrow^* w'$.
- ▶ Если вывод $\gamma\beta' \Rightarrow^* w'$ имеет вид $\gamma\beta' \Rightarrow^* a\gamma'\beta' \Rightarrow^* w'$, то $c = a \in FIRST(\gamma) \setminus \{\varepsilon\} \subseteq SELECT(A \to \gamma)$.
- ▶ Если же вывод $\gamma\beta' \Rightarrow^* w'$ имеет вид $\gamma\beta' \Rightarrow^* \beta' \Rightarrow^* w'$, то $c \in \text{FOLLOW}(A) \subseteq \text{SELECT}(A \to \gamma)$.
- ▶ Таким образом, с \in SELECT $(A \to \gamma)$. Значит, автомат $\mathcal M$ имеет команду (c, A) \to (γ , _), которую выполнит на (k+m+1)-м такте. Тогда имеем

 $\alpha_{k+m+1} = w_{k+m+1}\beta_{k+m+1} = w_{k+m}\gamma\beta' = w_k a_1 \dots a_m\gamma\beta' = \gamma_{i+1}.$

Теорема о корректности алгоритма построения синтаксического анализатора для LL(1)-грамматики: окончание доказательства

- ullet Найдётся такое ar k, что $w=\gamma_s=lpha_{ar k}$.
- Обозначим через w' непрочитанный после \bar{k} тактов суффикс цепочки w.
- ullet Тогда $w_{ar k}eta_{ar k}=lpha_{ar k}=w=w_{ar k}w'$, откуда $eta_{ar k}=w'$.
- Следовательно, автомат $\mathcal M$ прочтёт w' и опустошит стек, выполняя команды вида $(a,a) \to (\varepsilon,\vec{\ })$, а затем выполнит команду допуска.
- Итак, $w \in L(\mathcal{M})$.

Оценка числа шагов МПА для LL(1)-грамматики

Теорема

Число шагов (тактов), выполняемых МПА, который построен алгоритмом на слайде 17, линейно зависит от длины входной цепочки.

Доказательство.

- Пусть *n* длина входной цепочки.
- Рассматриваемая LL(1)-грамматика нелеворекурсивна в силу теоремы на слайде 12.
- Тогда длина любого вывода вида $B_0 \alpha_0 \Rightarrow B_1 \alpha_1 \Rightarrow \ldots \Rightarrow B_m \alpha_m$ меньше, чем число c нетерминалов в данной грамматике.
- Значит, построенный МПА, воспроизводя вывод входной цепочки (см. доказательство предыдущей теоремы), до любого из $\leqslant n$ тактов со сдвигом по входной цепочке, а также до такта, на котором выполняется команда допуска, выполняет менее c тактов без сдвига по входной цепочке.
- Таким образом, этот МПА выполняет всего O(n) тактов.

План

1 LL(1)-грамматики

② Синтаксический анализ для LL(1)-грамматик

3 Вычисление множеств выбора правил (начало)

Вычисление SELECT(($A \rightarrow \alpha$) и FIRST(X)

Пусть дана LL(1)-грамматика $G=(\Sigma,\Gamma,P,S)$.

$$\operatorname{SELECT}(A \to \alpha) = \left\{ \begin{array}{ll} \operatorname{FIRST}(\alpha), & \operatorname{если} \varepsilon \notin \operatorname{FIRST}(\alpha), \\ \left(\operatorname{FIRST}(\alpha) \setminus \{\varepsilon\}\right) \cup \operatorname{FOLLOW}(A), & \operatorname{если} \varepsilon \in \operatorname{FIRST}(\alpha). \end{array} \right.$$

Для вычисления $\operatorname{SELECT}(A \to \alpha)$ достаточно уметь вычислять $\operatorname{FIRST}(\alpha)$ и $\operatorname{FOLLOW}(A)$.

Kак вычислить FIRST(X)?

- FIRST(a) = $\{a\}$.
- $FIRST(A) = \bigcup_{(A \to \alpha) \in P} FIRST(\alpha)$.
- Пусть $L \subseteq_{\mathbf{t}} M$ означает, что $L \cap \Sigma \subseteq M$.
- Рассмотрим $\alpha = X_1 \dots X_n$, n > 0.
 - ▶ FIRST(X_1) \subseteq_{t} FIRST(α);
 - ▶ $FIRST(X_2) \subseteq_t FIRST(\alpha)$, если $\varepsilon \in FIRST(X_1)$;
 - ▶ $FIRST(X_3) \subseteq_t FIRST(\alpha)$, если $\varepsilon \in FIRST(X_1) \cap FIRST(X_2)$; . . . ;

<u>Лекции п</u>о теории формальных языков

- ▶ $\operatorname{FIRST}(X_n) \subseteq_{\mathsf{t}} \operatorname{FIRST}(\alpha)$, если $\varepsilon \in \operatorname{FIRST}(X_1) \cap \ldots \cap \operatorname{FIRST}(X_{n-1})$;
- ▶ $\varepsilon \in \text{FIRST}(\alpha)$, если $\varepsilon \in \text{FIRST}(X_1) \cap \ldots \cap \text{FIRST}(X_n)$.

Алгоритмы вычисления FIRST(A) и $FIRST(\alpha)$

```
Bход. LL(1)-грамматика G = (\Sigma, \Gamma, P, S).
Выход. Массив множеств FIRST(A) для каждого A \in \Gamma.
 1. для каждого a \in \Sigma FIRST(a) := {a};
 2. для каждого A \in \Gamma
          если ((A \rightarrow \varepsilon) \in P) FIRST(A) := \{\varepsilon\};
 3.
          иначе FIRST(A) := \emptyset;
 5. пока все множества FIRST(A) не стабилизировались, повторять
           для каждого (A \to X_1 \dots X_n) \in P, где n > 0, выполнить
 6.
 7.
                 i := 1:
                 FIRST(A) := FIRST(A) \cup (FIRST(X_i) \cap \Sigma);
 8.
                 если (\varepsilon \in \text{FIRST}(X_i))
 9.
10.
                        если (i < n)
                               i := i + 1; перейти на 8;
11.
12.
                        иначе FIRST(A) := FIRST(A) \cup \{\varepsilon\}
```

Вычисление $FIRST(\alpha)$ для $\alpha = X_1 \dots X_n$ (n > 0): инициализировать $FIRST(\alpha) := \emptyset$ и выполнить строки 7–12, где A заменён на α .

Литература

Основная литература

- Замятин А. П., Шур А. М. Языки, грамматики, распознаватели: Учебное пособие. Екатеринбург: Изд-во Урал. ун-та, 2007 (электронный вариант книги на http://elar.usu.ru, поиск). Дополнительная литература
- Ахо А., Лам М., Сети Р., Ульман Дж. Компиляторы: принципы, технологии и инструментарий. М.: ООО "И.Д. Вильямс", 2008.
- Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции. М.: Мир, 1978.
- Мартыненко Б. К. Языки и трансляции: Учеб. пособие. СПб.: Издательство С.-Петербургского университета, 2004 (электронный вариант книги на http://www.math.spbu.ru/user/mbk).